Sysen 533 deterministic modeling and simulation exam 1

SYSEN533

DeterministicModelingandSimulationExam1

1.  (25 pts) Thecompound tanksystemshown in Figure1 consistsof asphericaltank ofradius R1and acylindrical tankofdiameterD2. A liquid ofconstantdensityis fed atavolumetricrateF1in intothetopof aspherical tankandvolumetric rateF2in intothetop ofthecylindricaltank. The sphericalandcylindrical tanks interactthrough thepipeconnectingthem.Theflowrates intotheconnecting pipedepend ontheheightsoftheliquid in thetanks. Thevolumetric flowrate outof thesphericaltank

intothepipeis given byF1out  =k1

h1  , whilethevolumetric flow rateoutofthecylindricaltankinto

thepipeis given byF2out  =k1

h2  whereh1 and h2 arethe heightsoftheliquid in thesphericaland

cylindrical tanks respectivelyandk1  is thecommonvalvecoefficient.Thecylindricaltank alsohas a

drain on theright-hand sidewhich hasvolumetricflowrateF3out  =k2

coefficientfortheright-hand sidedrain.

h2    wherek2 is thevalve

a)      Obtain a dynamicmodelthatdescribes theheightsoftheliquid in thetanks. Is this a linearornonlinearmodel?

b)      For constantinputflow rates, F1in and F2in, analytically determine thesteady-statevaluesofh1 and

c)       Simulatethesystem and plottheheightsoftheliquidin thetanks versustimeforconstantinputflowratesusing thevaluesgiven in thetablebelow.(Run thesimulation for2000sec)

 F1in 2.0 ft3/s F2in 1.0 ft3/s R1 10.0 ft D2 20.0 ft k1 2.0ft5/2/s k2 3.0ft5/2/s h1(0) 4.0 ft h2(0) 4.0 ft

Figure1.Compound TankSystem

2.  (25pts)  Chaoticsystemsareones forwhich small changes eventuallylead toresults thatcan bedramaticallydifferent. The Rösslersystemisoneofthesimplestsets ofdifferential equationsthatexhibits chaoticdynamics. In addition totheir theoretical valuein studyingchaotic systems,theRösslerequations areusefulin several areasofphysicalmodeling including analyzing chemicalkineticsforreaction networks.  Consider thereaction network:

k1

A1+X2X

k1

k2

X+Y2Y

k2

k3

A5+YA2

k3

k4

X+ZA3

k4

k5

A4 +Z2Z

k5

whereX,Y, and Z represent thechemical specieswhoseconcentrationsvaryandA1, A2, A3, A4, and A5  arechemicalspecies whoseconcentrationsareheldfixed bylargechemical reservoirs, serving tokeepthe system outofthermodynamicequilibrium.ki  andki denote theforward and inversereaction rates.Thesystem of differentialequations thatdescribetheconcentrations x, y, and z(for chemicalspeciesX,Y, and Z) are:

dx =yzdt

dy =x+aydt

dz =bcz+xzdt

a)      Simulatethis systemfor a=0.380, b=0.300,and c=4.280with initial conditionsx(0)=0.1,

y(0)=0.2, z(0)=0.3. Run thesimulation for200seconds using a fixed-step size algorithm witha stepsizeof0.001seconds.Plottheconcentrationsx, y, andzversustimeononefigurewiththreesubplots. Additionally, in separategraphs, plotthephase-spaceplots:xversus y,xversusz, and yversus z. Finally,makea3-Dplotof xvs yvszusing theMatlab graphics command “plot3”

b)      Illustratethesensitivityofthesolution to variations intheinitial conditions byrepeating thesimulation ofpart(a) withx(0)=0.0999and thenwith x(0)=0.1001. (A0.1%changein thevalueoftheinitial condition in either direction.)Keeptheinitial conditions for y(0) and z(0) thesameas inpart(a). Showthesensitivitybysuperimposing theplots forthenew valuesyouobtain forx(t),y(t),and z(t)with theoriginal plots forxvs t,yvs t,and zvs t. In addition,makeplotsof thedifferences:x(t)– xorginal(t) vst,y(t)yorginal(t) vst, and z(t)zorginal(t) vs t.

c)       Illustratethesensitivityofthesolution to variations inparametervalues byrepeating thesimulationof part(a)withc=4.280001. [Use theoriginal initial conditions from part(a).]Show thesensitivitywith thesamesetof plotsas in part(b).

Whyisthis systemnon-linear?

Qualitatively describethesensitivity toinitial conditions and parametervalues.

3)      (25 pts) Acontinuous stir tank reactor(CSTR)is used toproducea product P fromchemicals Aand B.Thereactionis A+BàP.  Ais inexcess andtherateof decompositionofBisgiven by:

rb  =

k1 x2

+         2

(1     k2 x2 )

wherek1and k2areconstants and x2is theproductconcentration.Theequations describing thesystemaregiven by:

1                                          1                          2   2

The parameters are: Cb1 =24.9,Cb2=0.1 ,k1=k2= 1,andu1 =u2 = 1.The initial conditions are:  x1(0) =10and x2(0)=0.

a)      First, simulatetheequation for x1onlysinceitdoesnot depend onx2.Notethesteady-statevaluethatyou find forx1.

b)      Inthemodelforx2, initializetheintegrator for x1to thesteady-statevalue you found in part(a) andinitialize x2(0)=0. Run thesimulation for 1000seconds to determinex2(t)and thesteady-statevalueof x2.

c)       Repeatthesimulation for x2 using an initial value x2(0)=10. Notethenewsteady-statevalueyoufindfor x2.

d)      Bothof thepreviouscasesarestable.Thereis anothersteadystatecorresponding to everything elsebeingthesameand thesteadystates forx2and x1being  x2= 2.793and

e)      Demonstratethatthesteadystatewith x2=2.793is unstablebylinearizing theequation forx2aboutthesteady-statevaluesandshowingthatthelinearsystem thatresultsis unstable. Youcan do this  by either solving thedifferential equationor by simulating thesystem witha small initial Dx2.

4)      (25 pts) Considerthefollowing linear system

G(s)=8s+6                   2s3  +9s2 +13s+6

For this problem, usea unit step input.

a)      Createamodel for this systemusingonly integrators and run itfor10seconds.

b)      Replacetheintegratorswith discreteintegratorsand investigatetheeffectof forward, backward,and trapezoidal integratorswith sampling timesof0.01, 0.1, and0.2seconds.

Notethatintheconfiguration parametersyouwillneedtospecify thestepsizeand changetheintegratortodiscretestates only.Also,setallof thesampling times inthevarious blocksequal tothediscretesampling time.

c)       For each case, comparethetruesolution tothediscretesolution intwo ways:

(i)   Plotthetruesolution (in blue) and discretesolution (in red)ona singleplot.

(ii)  Plotthedifferencebetween thetruesolution and thediscretesolution.

If youwantto bereallyfancy, usethesubplotcommand toshowboth plotsin asinglefigure.

d)      Computeanestimateof theintegral squareerror foreach caseand createa tableofthesedifferences.

e)      Whatconclusionscanyoudrawregarding theaccuracyofthedifferentmethodsand step sizes?

Basic features
• Free title page and bibliography
• Unlimited revisions
• Plagiarism-free guarantee
• Money-back guarantee
On-demand options
• Writer’s samples
• Part-by-part delivery
• Overnight delivery
• Copies of used sources
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

We value our customers and so we ensure that what we do is 100% original..
With us you are guaranteed of quality work done by our qualified experts.Your information and everything that you do with us is kept completely confidential.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Zero-plagiarism guarantee

The Product ordered is guaranteed to be original. Orders are checked by the most advanced anti-plagiarism software in the market to assure that the Product is 100% original. The Company has a zero tolerance policy for plagiarism.

Free-revision policy

The Free Revision policy is a courtesy service that the Company provides to help ensure Customer’s total satisfaction with the completed Order. To receive free revision the Company requires that the Customer provide the request within fourteen (14) days from the first completion date and within a period of thirty (30) days for dissertations.

The Company is committed to protect the privacy of the Customer and it will never resell or share any of Customer’s personal information, including credit card data, with any third party. All the online transactions are processed through the secure and reliable online payment systems.

Fair-cooperation guarantee

By placing an order with us, you agree to the service we provide. We will endear to do all that it takes to deliver a comprehensive paper as per your requirements. We also count on your cooperation to ensure that we deliver on this mandate.

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26
The price is based on these factors: